936 research outputs found

    Speeding up neighborhood search in local Gaussian process prediction

    Full text link
    Recent implementations of local approximate Gaussian process models have pushed computational boundaries for non-linear, non-parametric prediction problems, particularly when deployed as emulators for computer experiments. Their flavor of spatially independent computation accommodates massive parallelization, meaning that they can handle designs two or more orders of magnitude larger than previously. However, accomplishing that feat can still require massive supercomputing resources. Here we aim to ease that burden. We study how predictive variance is reduced as local designs are built up for prediction. We then observe how the exhaustive and discrete nature of an important search subroutine involved in building such local designs may be overly conservative. Rather, we suggest that searching the space radially, i.e., continuously along rays emanating from the predictive location of interest, is a far thriftier alternative. Our empirical work demonstrates that ray-based search yields predictors with accuracy comparable to exhaustive search, but in a fraction of the time - bringing a supercomputer implementation back onto the desktop.Comment: 24 pages, 5 figures, 4 table

    A Simple Approach to Constructing Quasi-Sudoku-based Sliced Space-Filling Designs

    Full text link
    Sliced Sudoku-based space-filling designs and, more generally, quasi-sliced orthogonal array-based space-filling designs are useful experimental designs in several contexts, including computer experiments with categorical in addition to quantitative inputs and cross-validation. Here, we provide a straightforward construction of doubly orthogonal quasi-Sudoku Latin squares which can be used to generate sliced space-filling designs which achieve uniformity in one and two-dimensional projections for both the full design and each slice. A construction of quasi-sliced orthogonal arrays based on these constructed doubly orthogonal quasi-Sudoku Latin squares is also provided and can, in turn, be used to generate sliced space-filling designs which achieve uniformity in one and two-dimensional projections for the full design and and uniformity in two-dimensional projections for each slice. These constructions are very practical to implement and yield a spectrum of design sizes and numbers of factors not currently broadly available.Comment: 15 pages, 9 figure

    Multi-Resolution Functional ANOVA for Large-Scale, Many-Input Computer Experiments

    Full text link
    The Gaussian process is a standard tool for building emulators for both deterministic and stochastic computer experiments. However, application of Gaussian process models is greatly limited in practice, particularly for large-scale and many-input computer experiments that have become typical. We propose a multi-resolution functional ANOVA model as a computationally feasible emulation alternative. More generally, this model can be used for large-scale and many-input non-linear regression problems. An overlapping group lasso approach is used for estimation, ensuring computational feasibility in a large-scale and many-input setting. New results on consistency and inference for the (potentially overlapping) group lasso in a high-dimensional setting are developed and applied to the proposed multi-resolution functional ANOVA model. Importantly, these results allow us to quantify the uncertainty in our predictions. Numerical examples demonstrate that the proposed model enjoys marked computational advantages. Data capabilities, both in terms of sample size and dimension, meet or exceed best available emulation tools while meeting or exceeding emulation accuracy
    • …
    corecore